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The flow field and bare-spot formation in spin-up
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The spin-up from rest of a two-layer fluid with a free surface in a cylindrical container
rotating about a vertical axis is investigated for small Ekman numbers. Numerical
results from the axisymmetric Navier–Stokes equations, supported by comparisons
with improved boundary-layer approximations, show that the Ekman-type layer on the
bottom pushes the dense fluid of the lower layer to the periphery, and consequently
the interface between the layers curves upward near the sidewall and descends near the
centre. When the lower layer of fluid is sufficiently thin a bare spot appears at the
bottom, i.e. a region where the light fluid is in direct contact with the horizontal
boundary. The lower-layer fluid is spun-up quickly by the bottom Ekman layer, but
the angular motion in the upper layer is provided by the much weaker detached
Ekman layer on the interface between the two fluids, and hence the global spin-up
process is prolonged compared with the homogeneous fluid case. The influence of the
various dimensionless parameters and the connection with the continuous stratified
case are discussed.

1. Introduction
The spin-up from rest of a pure fluid in a cylindrical container of radius R∗, instan-

taneously set into rapid rotation with the angular velocity Ω∗ about its vertical axis
of symmetry z, is a fundamental problem in rotating flows. It represents an essential
stage in the operation of centrifuges and is of great relevance in the investigation of
geophysical flows. In the configurations of interest the value of the Ekman number,
E = ν∗/(Ω∗R∗2), is very small, where ν∗ is the kinematic viscosity of the fluid.

The classical linear theory of Greenspan & Howard (1963) describes the differential
spin-up of a homogeneous fluid in a closed container after a small increase ∆Ω of
its angular velocity. Goller & Ranov (1968) considered the flow in a cylinder with a
free surface. Wedemeyer (1964) developed an analytical model for the spin-up from
rest which concerns the transient process during which the initially stationary fluid
acquires a state of solid-body rotation with the angular velocity of the container. In
both the linear and nonlinear cases, the main transient flow field in the core is driven
by a secondary O(E1/2) convective motion, induced by the ‘suction’ or ‘pumping’
of the quasi-steady thin viscous Ekman layer on the horizontal solid boundary (or
boundaries, if the container is closed). The remarkable feature is that the Ekman-layer
suction activates the fluid in the entire core, so that the angular acceleration of the
fluid is almost completed on the spin-up timescale, which is significantly shorter than
the viscous diffusion time interval.

The fascinating spin-up phenomenon has numerous ramifications, as indicated by
the recent review by Duck & Foster (2001). An interesting aspect, from both academic
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and practical viewpoints, is the effect of stratification on the spin-up process. Let the
gravitational acceleration be in the −z-direction. The presence of a density gradient
or density jump introduces an axial buoyancy force which imposes a limitation on the
axial distance from the bottom accessed by the Ekman pumping effect. For spin-up
from rest this means that there may be large fluid domains which cannot be spun-up
by being flushed through the Ekman layer on the solid boundary. In particular,
the spin-up of two-layer liquid systems has received some consideration in the past.
Determination of exact spin-up times is important for the design of centrifuges used in
chemical and biological engineering applications. The transient shape of the interface
between the fluids must be known for the positioning of fluid intakes and discharges
(Berman, Bradford & Lundgren 1978; Lim, Choi & Hyun 1993). Other applications
are in geophysical flows of oceans and the atmosphere (Pedlosky 1967; Linden & van
Heijst 1984). The spin-up of two-layer liquid systems is also of particular relevance
to the investigation of rotating gravity currents with a lock release of the heavy fluid
when it is necessary to create a specific initial state (Hallworth, Huppert & Ungarish
2001).

Linden & van Heijst (1984) performed an experimental investigation of the differ-
ential spin-up about a vertical axis of a two-layer system with a thin lower layer and
a free surface. An important feature of the system investigated was the formation of
a bare spot which occurs when the transient interface (between the upper and lower
fluids) intersects the bottom of the container. The term ‘bare spot’ refers to the area
in which the upper-layer fluid contacts the bottom plate. The formation of bare spots
is relevant to oceanographic flows because it provides a mechanism for the removal
of sediments into fluid layers which are typically not in contact with the sea bottom
(Lambert et al. 1983). Linden & van Heijst also developed a theory for the prediction
of the radius and formation time of a stationary bare spot. This theory, however, is
based on severe simplifying assumptions such as the neglect of viscous coupling at
the interface and the assumption of a completely spun-up lower layer. In the spin-up
from rest case, not considered by Linden & van Heijst (1984), the Ekman layers
play a more dramatic role than in the differential spin-up case because no angular
momentum is present in the container at the beginning, and large domains of zero
absolute vorticity persist during the spin-up process. The spin-up from rest mechanism
requires the flushing of all the fluid particles through the Ekman layers, as opposed
to the differential (in particular linear) case where inviscid displacement-stretching of
fluid particles may produce local spin-up.

The spin-up from rest of a two-layer fluid system was considered by Lim et al. (1993)
by means of both experiments in a closed container and an approximate analytical
model. The analysis focused on systems in which both layers are of comparable
thickness, and concentrated on the effect of large differences in kinematic viscosities
between the fluids. It deliberately excluded the cases in which the interface intersects
the horizontal boundary of the container, i.e. the bare spot phenomenon. In a sequel
paper Kim & Hyun (1994) presented a numerical solution of the aforementioned
problem, capturing the deforming interface by a volume-of-fluid method.

The present work attempts to enhance knowledge about the transient process
leading to the formation of a bare spot in spin-up from rest, by means of a numerical
finite-difference solution of the axisymmetric Navier–Stokes equations supported
by an approximate boundary-layer model. This investigation can be considered an
extension of the studies of Kim & Hyun (1994) and Linden & van Heijst (1984). The
main novel aspects in our work are: (a) the development of the bare spot in spin-up
from rest, with emphasis on configurations with a free upper boundary, a thin lower
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Figure 1. Sketch of the system at the start of the spin-up process, t∗ = 0.

layer and thick upper layer, for fluids with (slightly) different densities but similar
viscosities; (b) the behaviour of the total angular momentum in the container, and
(c) the incorporation of new ingredients which have not been used in the previous
investigations in the numerical results and the approximate model (e.g. the Ekman
layer on the interface, an analytical result for the spin-up of the lower core), which
are expected to improve the analysis.

The structure of the paper is as follows. A brief description of the problem is
presented in § 2. The Navier–Stokes formulation and numerical method of solution
are presented in § 3. Typical numerical results are displayed and discussed in § 4; in
this context, an asymptotic (for small E) boundary-layer model is also introduced
and compared. Some concluding remarks are given in § 5.

2. Description of the problem
The spin-up from rest of a two-layer stratified fluid is considered. An initially

stationary cylindrical container of radius R∗ and height H∗, open to the atmosphere,
is filled with two fluids (e.g. fresh and salt water) of (slightly) different densities ρ∗u
and ρ∗l , with ρ∗l > ρ∗u, but equal dynamic viscosities (figure 1). The subscripts u and l
denote the upper and the lower fluid, respectively. Dimensional variables are marked
by an asterisk. The interface between the fluids, denoted Σ, is initially horizontal
and at height h∗0 above the bottom. At the time t∗ = 0+ the container is abruptly
set into rapid rotation about its vertical axis with the constant angular velocity
Ω∗. The objective is the description of the flow field and the understanding of the
mechanisms and timescales which govern the motion. The behaviour of the height
of the interface h∗(r∗, t∗) is of particular interest. We assume that Ω∗2R∗/g∗ � 1 and
hence the deformation of the upper free surface during and after the spin-up process
is negligible.

The essential global feature is, evidently, the increase of the total angular momentum
of the fluid in the container. In a rotating cylindrical coordinate system this property
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can be expressed as (per radian)

Γ (t) =

∫ H

0

∫ 1

0

ρ[ω(r, z, t) + 1]r3 dr dz, (2.1)

where the lengths are scaled by R∗, the angular velocity ω by Ω∗, time by Ω∗−1 and
the density by ρ∗u. For simplicity assume here ρ = 1. Initially Γ = 0 and at the
fully spun-up state Γ (∞) = 0.25H . The increase of Γ is provided by the friction
on the boundaries. The viscous layer on the sidewall thickens with time to O(E1/4),
but the Ekman-like layer on the bottom, which reduces the angular velocity from
ω(z = 0+, r, t) < 0 in the fluid core above the bottom to the zero boundary condition,
maintains a constant thickness O(E1/2) (after an initial period of formation of about
one revolution). We therefore expect that the azimuthal shear stress at the bottom is,
roughly, E−1/2ω(z = 0+, r, t)r, and dominant (µ∗∂(ω∗r∗)/∂z∗ is scaled with ρ∗uΩ∗2R∗2).
The torque M of this Ekman layer is the governing contributor to angular momentum
increase, i.e.

dΓ

dt
≈M = −E

∫ 1

0

(
∂ω

∂z

)
z=0

r3 dr ≈ −E1/2

∫ 1

0

ω(z = 0+, r, t)r3 dr. (2.2)

Evidently, the most effective torque is M0 = 0.25E1/2, applied at the beginning, when
the angular velocity in the core adjacent to the Ekman layer (position denoted by
z = 0+) is −1. Under the corresponding maximal constant torque the value of Γ (∞)
could be attained at t ≈ HE−1/2, but this is certainly an underestimate of the spin-
up time, because the fluid above the Ekman layer is spun-up during the process
(i.e. ω(z = 0+) is reduced) and the torque of the bottom decays. The important
question is what portion of the inner fluid is spun-up before the Ekman layer
torque M decays to, say, e−2 of its initial value M0. Afterwards, the spin-up (if still
necessary) can be caused only by the diffusion mechanism on the O(E−1) timescale.
To answer that question we must know where the partly spun-up fluid accumulates.
In a homogeneous fluid system the partly spun-up fluid concentrates in an annulus
adjacent to the outer wall (Wedemeyer 1964; Weidman 1976a, b; Hyun et al. 1983),
see below. On the other hand, in a two-layer stratified system the vertical motion of
fluid particles is hindered by gravity-buoyancy effects. In this case the partly spun-up
fluid tends to concentrate near the bottom and therefore enhances the decay of the
Ekman-layer torque; the result is, as shown in this paper, in particular in § 4, a more
complex and significantly longer spin-up process than in the classical homogeneous
case.

It is worthwhile to briefly recall some details of that classical flow, see figure 2.
Within the first revolution, at the horizontal bottom of the container a quasi-steady
viscous Ekman-type layer (of thickness O(E1/2), region II) appears. The flow in the
core above the Ekman layer remains essentially inviscid, with z-independent radial
and angular velocities. The Ekman layer constantly sucks fluid from the non-rotating
inner core (region I). Inside the Ekman layer, the fluid acquires angular velocity due
to viscous friction from the boundary. This fluid is pumped from the centre to the
periphery and finally expelled into the partly spun-up region III. Thereby, a secondary
convective core flow is created. Regions I and III are separated by an inwardly
moving cylindrical spin-up front. The approximation presented by Wedemeyer (1964),
indicates that for E → 0 the spin-up is performed by the Ekman layers, and yields
a simple analytical solution for the flow field in the interior, see Appendix A. This
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Figure 2. Flow regions in spin-up from rest of a homogeneous fluid
(side and top views in a rotating system).

predicts that the radial position of the front is exp(−τ) and

Γ (t)

Γ (∞)
= 1− e−2τ, (2.3)

where τ is the time scaled with
τ∗su = 2H/(E1/2Ω∗). (2.4)

In the present configuration, the density of the fluid expelled by the Ekman layer is
larger than that of the fluid in the upper layer. Consequently, the spun-up particles of
fluid expelled axially near the outer wall can travel upward easily while embedded in
the dense fluid, but are strongly hindered after they reach the height of the interface.
In other words, the density jump at the interface prevents the spun-up fluid from
the Ekman layer from entering the region of light upper fluid. Thus, the thin lower
layer acts as a buffer between the bottom Ekman layer and the upper fluid, and
hence the spin-up of the two-fluid system is significantly delayed compared to the
one-fluid configuration. The interface will descend in the region where the Ekman
layer sucks fluid in and rise where it expels fluid. If the lower layer is thin and the
stratification is weak, the central part of the interface may even come into contact
with the bottom wall and form a bare spot. However, when both fluids eventually
acquire the angular velocity of the container, the interface must attain the shape of
the classical equilibrium parabola (see Appendix C, (C 2) and (C 3)):

h∗ = h∗0 − Ω∗2R∗2

4g∗

[
1− 2

(
r∗

R∗

)2
]
. (2.5)

It is convenient to start the more detailed investigation of the two-fluid problem
by means of numerical experiments performed with a numerical solution of the
axisymmetric Navier–Stokes equations. The transient flow field before and early after
the formation of a bare spot is focused on.

3. Numerical simulation
3.1. Formulation

The governing equations are formulated in a cylindrical coordinate system rotating
with angular velocity Ω∗ about the vertical axis z. The gravitational acceleration is

−g∗ẑ. The velocity vector is denoted by v = ur̂+ vθ̂+wẑ in terms of the unit vectors

r̂, θ̂, ẑ in the radial, azimuthal and axial directions.
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The density of the lower-layer fluid is ρ∗l and that of the upper-layer fluid ρ∗u. It is
convenient to describe the density field by means of a density function, φ(r, t), which
is defined by

ρ∗(r, t) = ρ∗u[1 + εφ(r, t)], (3.1)

where

ε = (ρ∗l − ρ∗u)/ρ∗u. (3.2)

Hence, it is expected that 0 6 φ 6 1, with φ = 1 in the ‘pure’ dense-fluid domain and
φ = 0 in the ‘pure’ upper-fluid domain. The moving interface Σ(r, t) is captured by
solving a transport equation for φ.

The analysis is conveniently performed with dimensionless variables obtained by
using the scaling

[r∗, v∗, t∗, P ∗] = [R∗r, R∗Ω∗v, Ω∗
−1

t, ρ∗u(Ω
∗R∗)2P ]. (3.3)

The governing equations are:
(i) continuity of volume

∇ · v = 0; (3.4)

(ii) momentum balance

Dv

Dt
+ 2ẑ × v =

1

1 + εφ
[−∇p+ φf + E∇2v], (3.5)

with the reduced pressure

p = P −
(
r2

2
− g∗

Ω∗2
R∗
z

)
, (3.6)

and the body-force acceleration f given by

f = εrr̂ − 1

Fr2
ẑ; (3.7)

(iii) dense fluid transport

Dφ

Dt
= ∇ ·D∇φ. (3.8)

The relevant dimensionless parameters, in addition to ε defined above, are the
Ekman number

E =
µ∗

ρ∗uΩ∗R∗
2 , (3.9)

and the global Froude number (squared)

Fr2 =
Ω∗2

R∗

g′∗
, where g′∗ = εg∗. (3.10)

E represents the ratio of viscous to Coriolis effects in the global motion. Fr2 is the
ratio of the representative centrifugal and reduced gravity components of the body
force. We assume the same viscosity µ∗ for both fluids, but this can be easily relaxed.
In the present scaling the Rossby number equals unity, which reflects the nonlinearity
of the spin-up flow. The dimensionless geometric parameters of the configuration are
the height of the container, H , and the initial thickness of the lower layer of fluid, h0,
both of the order of unity.

The present investigation focuses on flows with small values of E and ε and values
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of Fr2 of order unity. The diffusion coefficient D (the inverse of a Péclet number)
is assumed very small even compared with E. (The typical physical value of D for
a system of, say, salt-water layers, which is typical of our investigation, is negligibly
small for the time periods considered, but here a non-zero D is used as an artificial
diffusion coefficient for numerical smoothing of the large density gradients at the
interface, otherwise some spurious numerical oscillations may appear.)

The initial conditions at t = 0 are

v = −rθ̂ ∀ 0 6 r 6 1, 0 6 z 6 H, (3.11)

φ =

{
1 ∀ 0 6 r 6 1, 0 6 z 6 h0,
0 elsewhere.

(3.12)

The boundary conditions for t > 0+ are

v = 0 on the bottom and sidewalls, (3.13)

v · ẑ = 0, no tangential stress at z = H, (3.14)

regularity at the axis r = 0, (3.15)

and

n̂ · ∇φ = 0 on all boundaries. (3.16)

These conditions neglect the deformation of the free surface caused by the centrifugal
and Coriolis effects. This simplification is convenient from the computational point
of view, and is well-justified for the small values of Ω∗2R∗/g∗ assumed here. To be
more specific, it can be argued that the displacement of the interface during the
spin-up process is smooth in time and its magnitude at the end of the process is
bounded by Ω∗2R∗2

/4g∗. Note that Ω∗2R∗/g∗ can be rewritten as εFr2, and hence
the assumption that the upper boundary is a frictionless solid lid introduces relative
errors of magnitude εFr2/4 at most.

A Stokesian stream function ψ(r, z, t) is defined by

u =
1

r

∂ψ

∂z
, w = −1

r

∂ψ

∂r
. (3.17)

The angular velocity ω(r, z, t) in the rotating frame is given by

ω =
v

r
. (3.18)

The incorporation of the density transport equation (3.8) makes our formulation
different from that used by Kim & Hyun (1994). Consequently, the latter needed
a special numerical technique for tracking the interface, while in our solution the
interface is simply captured by the sharp gradients of the function φ.

3.2. Computations

The foregoing system of equations and boundary conditions, subject to the axial-
symmetry assumption, is solved by a time-marching finite difference discretization
method.

Briefly, the method is based on forward-time formulation of the velocity compo-
nents, with implicit Coriolis and pressure terms. At each time step, the continuity
equation for the ‘new’ velocity field yields an elliptic equation for the ‘new’ pressure
field, p+(r, z). The details are described in Appendix B. The numerical, staggered grid
is sketched in figure 3. The discretized variables p and φ are defined at mid-cell
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Figure 3. Spatial staggered grid, for 0 6 r 6 1, 0 6 z 6 H , plus dummy boundary cells.

position, denoted (i, j); u and v are defined at the positions (i± 1
2
, j) and w is defined

at (i, j ± 1
2
), for i = 1(1)il, and j = 1(1)jl (in addition, dummy points are used to

implement boundary conditions).
Both the r and z grid coordinates are stretched by simple mapping functions r(R)

and z(Z). The grids Ri = (i− 1
2
)δR and Zj = (j − 1

2
)δZ are uniform,

0 6 R 6 1, 0 6Z 6 H, (3.19)

δR = 1/il, δZ = H/jl. (3.20)

An illustration of the finite difference approach is(
1

r

∂

∂r
r

1

1 + εφ

∂p

∂r

)
ri,zj

≈ 1

ri

1

r′iδR (Yi+1/2,j − Yi−1/2,j), (3.21)

where

Yi+1/2,j = ri+1/2

1

1 + εφi+1/2,j

1

r′i+1/2δR
(pi+1,j − pi,j), (3.22)

and r′i is the derivative of r(R) at Ri (substituting i − 1 in place of i yields Yi−1/2,j).
The truncation error is O(δR2 + δZ2).

The combination of the foregoing time and space discretizations is the core of
the computer code used in this work. For each time step the discretized form of the
Poisson equation (B 4) for the discretized variables p+

i,j , with 1 6 i 6 il and 1 6 j 6 jl,
must be solved. This yields a block tri-diagonal linear system. The linear system was
solved by a bi-conjugate gradient iterative algorithm (Press et al. 1992). The iterations
in the first time step start with 0, and subsequently the pij field provides the starting
values for p+

ij . Some test cases were also run with a direct solver for the block tri-
diagonal system. The computations use real-8 variables. The typical grid has il = 100
constant radial intervals and jl = 200 stretched axial intervals (this provides about
seven axial intervals in the Ekman layer domain of thickness 3E1/2 considered in this
work, see below). Verification runs were also performed on 100× 150 and 120× 200
grids. The agreement between the results on the different grids was excellent. The
typical time step was δt = 10−3. In several test cases δt was halved, without causing
any significant differences in the results or stability. The diffusion coefficient D was
defined as E/Sc, with Sc the Schmidt number. Sc was given the artificial value 10
in order to dampen non-physical numerical oscillations around the interface between
the two fluids. The code was run on one processor on the following computers: SUN
Ultra-Enterprise E4500 with 400 Mhz processors, and SG Origin with R10000/3.4
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Figure 4. Present numerical results and experimental results by Linden & van Heijst (1984,
figure 7b), for the free-surface azimuthal velocity v(r) at t = 4 rev (solid curves and circles) and
t = 11 rev (dashed curves and open circles): ∆Ω/Ω = −0.292, ε = 1.02 × 10−2, Fr2 = 0.89,
E = 1.1× 10−5, H = 0.45, h0 = 2.01× 10−2. Note that profiles 2–5 collapse onto one line.

250 Mhz processors. Typical run times for the computation of the flow field presented
below in one revolution physical time period were approximately 2.5 CPU hours for
a 100× 150 grid, and 6 CPU hours for a 100× 200 grid.

Various test problems were used for the verification of the numerical code. In
particular, for the spin-up from rest of a pure fluid in a closed cylindrical container
of height 2H∗, our results were in excellent agreement with the numerical results of
Hyun et al. (1983). The present numerical code was also tested by comparison with the
experimental data of Linden & van Heijst (1984) for the differential spin-up of a two-
layer fluid in an open container. Figure 4 shows a comparison between experimental
results (dots and circles) for v(r) at the free surface (taken from figure 7(b) of
the aforementioned paper) and the corresponding numerical results of our code at
t = 4 rev (solid line) and t = 11 rev (dashed line). The frame of reference rotates with
the final angular velocity. The numerical results correspond to five representative
vertical positions inside the upper layer. The agreement between the numerical results
and the experimental data is judged to be very good, within the range of the
plausible experimental errors. The overlapping of the numerical results indicates
that the angular velocity in the upper-layer domain is z-independent. The curves
corresponding to z = 0.05 intersect the lower layer, which has already acquired a
larger angular velocity.

4. Results
We present in some detail results for the following typical configuration: the height

of the container is H = 1, the initial thickness of the lower fluid domain is h0 = 0.2
and the Ekman number is E = 5 × 10−5. To achieve different values of Fr2 we vary
the density difference ε to produce different values of reduced gravity, see (3.10); this
connects the present numerical experiments with feasible tests in which the geometry,
angular velocity and density of the upper fluid (say water) are fixed, and the density
of the lower layer is changed by addition of salt. To be more specific, a cylinder
of radius R∗ = 10 cm rotating with Ω∗ = 2 s−1 and an upper layer of fresh water
(ν∗ = 0.01 cm2 s−1) yields the basic physical setup for the results discussed below.
The Froude numbers considered are achieved for the practical values of g′∗ = 5 and
20 cm s−2. The dimensionless thickness of the Ekman-type layer at the bottom is
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δ ≈ 3
√
E = 0.021. In a typical grid with 150 vertical intervals, there were about five

mesh points within this axial span. Thus, a good resolution of this shear layer is
anticipated (the accuracy of the volume flux is estimated as about 1%). The free
Ekman layer which appears on the interface, as explained below, is thicker and
smoother than the bottom layer, and hence good numerical resolution in this region
is also found.

The spin-up interval for a homogeneous fluid in a similar configuration, 2HE−1/2/Ω∗,
is about 45 revolutions.

4.1. Case ε = 5.1× 10−3, Fr2 = 8

In this case g′∗ = 5 cm s−2. Figure 5 shows contour plots of the density-function φ-
field for successive times t. The grey corresponds to φ = 0, i.e. pure upper-layer fluid
and the black to φ = 1, i.e. pure lower-layer fluid. The density jump at the interface
is slightly smeared by numerical effects. We use a fixed-grid shock-capturing type
approach to detect the position of the interface, and hence the moving discontinuities
of density are smoothed over 2–3 grid intervals. Figures 6 and 7 show contour plots
of ω and ψ.

Within the first revolution a quasi-steady thin Ekman layer develops at the bottom
of the container. The Ekman layer transports fluid from the centre to the periphery.
The Ekman layer below the non-rotating region sucks fluid in from the core and
thereby causes the interface to descend. The Ekman layer below the partially spun-up
region expels fluid into the core. However, a particle of the expelled fluid, of density
1 + ε, is subjected to a strong negative buoyant force when it attempts to move
above the interface, and therefore the axial propagation of these particles is restricted.
The interface moves up to accommodate the fluid expelled by the bottom Ekman
layer, but this spun-up fluid is recirculated back to the centre before it reaches axial
positions significantly larger than h0.

Figure 6 shows the angular velocity field (in the rotating frame) ω(r, z) at two
times. The (partly) spun-up fluid domain is near the periphery and in the bottom
Ekman layer, and there is a clear non-rotating domain elsewhere. These domains
are separated by a quite sharp spin-up front, which, for practical purposes, can be
defined as the position of the contour ω = −0.95, outside the Ekman layers. The
spin-up front propagates radially inward and its upper part is vertical (like in the
homogeneous fluid case), but its lower part is inclined. The spun-up domain contains
two cores, each of essentially z-independent ω. It is evident that, at a fixed time,
the spin-up process in the lower core is significantly more advanced that in the
upper core. The cores with different ω are connected by an inclined layer of strong
shear.

We emphasize that the spin-up observed in the upper layer of fluid, although slower
than in the lower layer, is still much faster than that provided by the viscous diffusion
of momentum from the sidewall. An estimate (based on Stokes first problem) shows
that this diffusion produces

ω = −erf[0.5(1− r)/(Et)1/2)] (4.1)

and hence is able to establish the value ω = −0.95 at the radial distance from the
sidewall ∆ = 0.049

√
n in the present problem, where n is the number of revolutions.

This yields ∆ = 0.099 and 0.16 for n = 4 and 10, respectively. Figure 6 shows a much
deeper penetration of the spin-up front in the upper layer of fluid. The conclusion is
that the fluid in the upper layer is also subject to convective spin-up by Ekman layer
action, in this case due to the shear at the interface between the fluids.
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Figure 5. Density function φ(r, z) contour plots at successive t: (a) 4 rev, (b) 10 rev, (c) 11 rev,
(d ) 12 rev; ε = 5.1× 10−3, Fr2 = 8, E = 5× 10−5, H = 1, h0 = 0.2.
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Figure 6. Angular velocity ω(r, z) contour lines at successive t: (a) 4 rev, (b) 10 rev; ε = 5.1× 10−3,
Fr2 = 8, E = 5× 10−5, H = 1, h0 = 0.2. The values of ω range from 0 at the solid wall to −1.00 in
the non-rotating core.

It is seen in figure 5 that the interface consists of a horizontal and an inclined
part. A comparison with figure 6 shows that the interface is horizontal in the region
where the fluid in both layers is still non-rotating. The inclined part of the interface
corresponds to the region where the lower layer is already partly spun-up.

The lower-layer fluid acts as a buffer between the bottom Ekman layer, which
drives the flow, and the upper fluid. Therefore, the spin-up progresses much faster
in the dense layer than in the upper layer. Thus, the inclined part of the interface
separates two regions of different ω. Viscosity smooths out this difference by means
of an Ekman-type shear layer. In the weakly inclined part of the shear layer (say
r ≈ 0.75) the change of ω from one z-independent core to the other one occurs over
a region with a dimensionless thickness of ≈ 0.06, in agreement with the expectation
that the shear layer at the interface is of Ekman-type. This feature is also reflected
by the behaviour of the streamlines, figure 7, which display recirculations below and
above the inclined interface, of magnitude E1/2.

In other words, the interfacial shear layer couples the spin-up processes of the lower
and upper cores. This layer provides a two-way volume transport: from the centre to
the periphery in the upper part, and in the opposite direction in the lower part. The
faster rotating lower-core fluid viscously accelerates the light fluid in the upper part
of the inclined shear layer and, thus, spins up the upper core. The upper fluid, on the
other hand, has a decelerating effect on the the lower layer and, therefore, counteracts
the spin up of the dense core.
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Figure 7. Stream-function contour lines ψ/E1/2 corresponding to figure 5(c).

In the case presented, the stratification is weak (Fr2/9 > h0, see below), and hence
a significant deformation of the interface occurs during the initial stages of the spin-
up. During the first 10 revolutions the interface rises rapidly to about 3h0 at the
periphery, and descends to almost 0.3h0 at small r. Eventually, the interface touches
and intersects the bottom of the container (figure 5c, d ). The circular region in which
the upper-layer fluid is in direct contact with the bottom boundary is termed the
bare spot. At this stage the upper-layer fluid is also directly affected by the strong
Ekman layer friction at the bottom boundary and the spin-up of the lighter fluid
becomes more effective. However, we notice that what is really important here is the
area of the bare spot, not merely its presence; the spin-up of the upper layer can
be significantly accelerated when the bare spot occupies a significant portion of the
bottom boundary area.

The numerical results (figure 5d ), moreover, indicate a possible mixing between
the two fluids as the Ekman layer pumps upper-core fluid beneath the dense fluid.
Such an intrusion was observed by Smeed (1987) in an experimental investigation of
a related problem. Because of mixing and numerical diffusion, a clear-cut interface
is indiscernible at larger times. Linden & van Heijst (1984) reported the tendency
of the investigated flow to become unstable as time increases. In this case, the axial
symmetry of the flow breaks down. Better numerical resolution at larger times would
require costly computations on much finer grids, but a relation between the observed
instability and the mixing predicted by the numerical code is anticipated. Therefore,
the computations were not extended to larger times.

The secondary radial core velocity u(r, z) scaled by
√
E is displayed in figure 8.

Again, in each layer u shows only a very weak axial dependence which carries over to
large times. The oscillations at t = 11 rev, z = 0.5, 0.6, reflect the multiple shear-layer
structure of the local flow field.

As expected for spin-up, the radial flow in the cores is negative. This allows
transport of spun-up fluid from the periphery to the centre. The radial flow in the
upper layer prior to the formation of the bare spot is driven by the interfacial shear
layer and by the displacement of the interface. The value of u in the thick upper
region is significantly smaller than in the thin lower layer which is directly affected
by the bottom Ekman layer.

Figure 9 shows z-dependent profiles of the reduced pressure at different radial
positions. (Note that the abscissa is directed from right to left.) This plot confirms



130 M. Ungarish and J. Mang

0

–0.1

–0.2

–0.3

0 0.2 0.4 0.6 1.0
r

u/
√E

k

5
4
3
2
1

z
0.9
0.8
0.7
0.6
0.5

0.8

0.5

0.6

(b)

0

–0.4

–0.8

–1.2

0 0.4 0.6 1.0

u/
√E

k

0.8

0.08 0.1

(a)

0.12

0.2

0.50.9

Figure 8. Radial velocity u(r, z)/
√
E at successive t: (a) 4 rev, (b) 11 rev; ε = 5.1× 10−3, Fr2 = 8,

E = 5× 10−5, H = 1, h0 = 0.2.

that, as expected, the pressure distribution remains hydrostatic-cyclostrophic during
the process. Although the flow is nonlinear (ω undergoes an O(1) change during spin-
up), the Ekman-layer-induced axial velocity is still too weak to support a substantial
∂p/∂z beyond the hydrostatic balance. Inside the upper layer, the reduced pressure is
z-independent, and in the lower layer it varies linearly with z because of the additional
body force term in the momentum balance for the lower layer, see (3.5)–(3.7). The
slope discontinuity in the contour lines indicates the position of the interface.

4.2. Asymptotical modelling

The numerical results suggest that the fundamental behaviour of the flow field,
for very small but realistic values of E, can be captured by a simplified model, an
extension of Wedemeyer’s (1964) homogeneous-fluid approximation for a two-domain
system with a moving interface. The model is based on the combination of inviscid
thick cores and asymptotically thin Ekman layers at the bottom and the interface.
In each core the density is constant (1 and 1 + ε) and the radial velocity, angular
velocity and ∂p/∂r are z-independent. A similar approach was successfully employed
by Lim et al. (1993) in an investigation of the spin-up from rest of a system of two
thick layers of different fluids in a closed container. The details of the mathematical
formulation are described in Appendix C.

Figure 10 illustrates the simplified flow field. Using the assumption of a hydrostatic-
cyclostrophic pressure distribution, and the conditions of pressure continuity at the
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Figure 10. Schematic description of approximate flow-field model.

interface and of volume conservation for the lower layer, an equation for the height
h(r, t) of the interface in terms of the angular velocities in the cores is derived. It
turns out that during the spin-up stage the local inclination of the interface, ∂h/∂r,
is essentially proportional to Fr2 times the difference of the centrifugal accelerations
in the lower and upper cores. Thus, the interface is horizontal where both layers
of fluid are still non-rotating, and a strong inclination of the interface corresponds
to the region where the lower fluid is already partly spun-up but the upper fluid is
still not rotating. The spin-up fronts in the upper and lower cores are indicated by
dashed vertical lines. The Ekman-type shear layers, which smooth out the differences
of angular velocities between the different domains, are also marked by dashed lines.

Integral volume conservation requires that the radial volume fluxes in the shear
layers at the bottom and at the interface are balanced by respective radial flows in the
core. The Ekman layer induces an inwardly directed radial core component uEl in the
dense region. The shear layer at the interface contributes uΣl in the outward direction
to the radial flow in the dense layer. The contribution of the interfacial shear layer
to the radial core flow in the upper layer uΣu is directed from the periphery to the
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centre. Additional radial velocity components uDl and uDu are induced as a result of
the axial motion (deformation) of the interface.

The azimuthal momentum balance in each core reflects the fact that the angular
velocity increases in time due to convection of angular momentum (from the periphery
to the centre), supplemented by a small radial shear term which smooths out the
boundary conditions and the gradients of the spin-up front.

The mathematical manipulations of these balances lead finally to a coupled system
for the variables h, ωu and ωu as functions of r and t which is significantly less
complex than the original Navier–Stokes formulation. However, this model has several
deficiencies which render it less useful than anticipated for practical simulations. First,
the simple description fails when a bare spot appears, because the rim of such a region
is a moving complex viscous ‘corner’ with merged Ekman layers. This restricts the
use of the model to the short initial time periods or to configurations with small
values of the parameter Fr2 (see below). Second, we note that this approximation is
asymptotical for E → 0, but the accuracy is limited by some inherent errors. The flow
field is strongly nonlinear (the Rossby number is not small) and the Ekman-layer
transport formulas available for this case are merely integral correlations with typical
errors of about 10%. Such errors are acceptable in our attempt to verify this model’s
ability to capture the essential features of the flow field. Third, no analytical solutions
are in general available, in contrast to the homogeneous fluid case; however, some
useful progress in this direction can be made, as follows.

4.2.1. Analytical results

Consider a special case in which the flow field in the lower core can be almost
decoupled from flow field in the upper fluid. Indeed, for the initial stage of the spin-up
process in the case when the deformations of the interface is weak (Fr2 not large)
and the upper layer is thick (H/h0 � 1), we may expect the following approximate
behaviour: spin-up is confined to the lower-layer region, while the fluid in the upper
layer is unaffected. The lower-layer core is therefore subjected to the acceleration of
the bottom Ekman layer and the hindrance of a free Ekman layer at the interface.
The radial volume flux in the Ekman layer is approximated by the correlation

Qb =
E1/2

2
r(ωb − ωl), (4.2)

where the subscript b denotes the horizontal boundary. In the present case, ωb = 0
for the bottom solid wall, and ωb = 0.5(ωl − 1) on the interface Σ (i.e. the average
value of the upper and lower cores). The radial velocity in the core is z-independent,
and hence volume conservation dictates that the value of −uh0 equals the sum of the
Ekman fluxes on the top (interface) and bottom of the lower domain.

In the core of fluid of thickness h0 outside the Ekman layers the inviscid balance of
angular momentum is simply between the time-dependent and the radial advection
terms. Under the previous considerations, this can be expressed as

∂Ωlr
2

∂t
+
E1/2

2h0

1

r
(−r2 + 3

2
Ωlr

2)
∂Ωlr

2

∂r
= 0, (4.3)

where

Ωl = ωl + 1, (4.4)

and subject to the initial condition

ωl = −1 (t = 0). (4.5)
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Equation (4.3) is, not surprisingly, of the form of Wedemeyer’s inviscid equation (for
a layer of fluid of height h0), but in the present case the pumping effect of the upper
layer is weaker than for a solid boundary, which leads to non-classical consequences.

The solution of (4.3) can be obtained by the method of characteristics. It reveals
a moving spin-up front between stationary (ωl = −1) and partly spun-up fluid. We
find that the representative spin-up time interval for the lower fluid is

τ∗su−l = 2
h0

E1/2Ω∗
, (4.6)

and that the spin-up front is at r = exp(−T), where T = t∗/τ∗su−l . In the spun-up
region the angular velocity is given by

ωl =
2

3

1− e−2T/r2

1− e−2T − 1 (e−T 6 r < 1). (4.7)

It is remarkable that in this case the lower core is not spun-up to solid-body rotation
ω = 0 during the local spin-up time interval, but rather attains a quasi-steady angular
velocity ωl = −1/3. (A vertical shear layer, possibly of Stewartson type of thickness

∼ h1/2
0 E1/4, is needed near the wall r = 1 to reduce ωl from −1/3 to zero, as detailed

in Appendix C.) The value ωl = −1/3 reflects the balance between the driving friction
of the solid bottom and the milder hindrance of the upper non-rotating fluid core.

During the relatively short time interval τ∗su−l the friction torque of the bottom is
reduced to 1/3 of its initial value because of the spin-up of the lower fluid, and hence
the subsequent increase of angular velocity of the system (recalling that the upper
fluid is still at absolute rest) is expected to require a time period longer by a factor
of about three than for a homogeneous fluid of height H − h0, see (2.2).

The foregoing result allows a quick estimate of the maximal displacement of the
interface from the initial position. Volume conservation and the pressure field, due
to the hydrostatic–cyclostrophic balance and continuity at the interface, dictate that
when ωl = −1/3 and ωu = 0 the height of the interface is, see (C 15),

h(r) = h0 + 1
9
Fr2(1 + ε)(2r2 − 1). (4.8)

Formally, when Fr2(1 + ε)/(9h0) < 1 then h(r) > 0 for r > 0 and a bare spot is not
expected. In this case, the subsequent spin-up of the upper layer is caused mostly
by the weak friction between the upper and the lower fluids. On the other hand,
when Fr2(1 + ε)/(9h0) > 1 we expect that the displacement of the interface plays an
important role during the initial spin-up, including the formation of a bare spot; in
this case the approximations (4.3)–(4.7) are not valid.

The foregoing analysis also indicates that the time required for the development of
the conditions under which a bare spot can form is the spin-up time interval of the
lower domain, given by (4.6). However, on account of the assumptions under which
this result was derived, it can be used only as an estimate in the general case. For
example, for the data employed in our computations in § 4.1 we obtain τ∗su−l = 9 rev,
and figure 5 indicates the formation of the bare spot at about 11 rev.

In fact, the practical criteria for the appearance of the bare spot may be less
clear-cut than the above-mentioned values of Fr2(1 + ε)/(9h0) and τ∗su−l because of
the non-rigorous considerations used in this derivation. Linden & van Heijst (1984)
derived corresponding criteria for bare-spot formation in differential spin-up. They
also assumed that the upper domain is thick and maintains its initial angular velocity,
but postulated that the lower domain is fully spun-up, see Appendix C, §C.2. We
think that the present approach, which takes into account the spin-up of the lower
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layer subject to the hindrance friction from the upper domain, is more realistic. The
friction from the upper core reduces the angular velocity in the lower core, and hence
a larger threshold value of Fr2 is required for the formation of the bare spot.

Linden & van Heijst (1984) estimated the time of formation of the bare spot by
assuming that the interface descends with the initial axial suction velocity of the
bottom Ekman layer. This yields, in the present case, half the value of the present
τ∗su−l . We think that this is an underestimate, because it does not account for the
recirculation and the decay of the Ekman-layer suction with time, but may become
relevant for very large values of Fr2/h0 when the behaviour of a homogeneous fluid
is reproduced. The experiments of Linden & van Heijst (1984) show agreement, but
with considerable scatter, with their estimate, and given the wide parameter range
considered it not possible to extrapolate these observations to the present problem.

The validity of the model is checked and further information on the flow field
obtained below, for a flow configuration with a smaller value of Fr2 than used before
in § 4.1.

4.3. Case Fr2 = 2

In this case ε = 2.04 × 10−2 and hence g′∗ = 20 cm s−2, four times larger than in the
previous one, with other parameters unchanged. In figures 11–13, both full numerical
and approximate-model results are displayed. Comparing figures 5 and 11, it is seen
that the increase in stratification (a four times smaller Fr2, but the same E and h0)
leads to a significant reduction of the interface deformation.

Figure 11 shows that there is good agreement between the approximate (dashed
curve) and numerical predictions of the interface at t = 4 rev. At later times (t = 8 rev)
the approximate results slightly underestimate h in a small region near the sidewall.
However, for small radii the approximate curve is still very close to the position
of the interface obtained from the Navier–Stokes numerical computations. (As time
increases, some smearing of the φ(r, z)-field around the interface appears, mostly in
the non-rotating region, but this is a small effect when ε� 1 as considered here, and
outside the scope of our investigation.)

Figures 12 and 13 show comparisons between the approximate and numerical
results for ω and u/

√
E at t = 2 rev and t = 8 rev. The predictions of the approximate

model for the velocity components of the lower layer ωl and ul are represented by
dashed lines, and those of the upper layer ωu and uu are represented by dash-dotted
lines. The approximate and numerical results for ωu,l are in very good agreement.
The agreement between the approximate and numerical results for the O(E1/2) radial
flow varies a little with time but is still fair. There should be no concern about the
positive sign of u at z = 0.4 and t = 2 rev because the secondary flow is not yet fully
developed in the upper layer at this early time.

Figure 14 shows the time evolutions of the angular velocities as predicted by the
numerical solution of the two-layer system (solid curves, the value z = 0.1) and
compared with analytical result (4.7) and (C 14) (dashed lines). It is seen that for a
significant number of revolutions there is fair agreement between the results in the
lower core region, regarding both the position of the spin-up front and the value of
ω. The discrepancies can be attributed to the fact that in this case the displacement
of the interface is not really small, and the spin-up front is smeared by viscous effects
neglected by our analytical model. The agreement is expected to improve for smaller
values of Fr2/h0 and E. Various tests, not detailed here, confirmed that, overall, the
simple result (4.7) provides a useful approximation for the initial behaviour in the
lower core when Fr2/9h0 < 1.
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Figure 11. Numerical density function φ(r, z) contour plots and model predictions for the position of
the interface (dashed line) at successive t: (a) 4 rev, (b) 8 rev; ε = 2.04×10−2, Fr2 = 2, E = 5×10−5,
H = 1, h0 = 0.2.

4.4. Total angular momentum

We have discussed the various details of the flow field during the Ekman-layer-
dominated spin-up stage. The ultimate concern of the spin-up process is the behaviour
of the total angular momentum in the container, Γ (τ), see (2.1). We now consider this
global feature, as reflected in the previously discussed cases with Fr2 = 8 and 2. For
comparison, we add the homogeneous counterpart (ε = 0 and Fr →∞).

The behaviour of Γ (τ) is presented in figure 15(a, b). In the first plot the numerically
calculated Γ (τ) is scaled with the steady-state value corresponding to solid-body
rotation. We observe that, as expected, Γ increases toward this value monotonically
on the τ scale, and that the stratification hinders this process. Indeed, the fastest
increase of Γ is for Fr = ∞ and the slowest for Fr2 = 2. However, the influence of
Fr2 on Γ (τ) is not very dramatic. At τ = 0.4 the value of Γ for Fr = ∞ is only 20%
larger than for Fr2 = 2.

Figure 15(b) displays the total angular momentum Γ (τ) obtained from numerical
computations scaled with the value predicted by the Wedemeyer approximation based
on the Ekman layers only, Γwed = 0.25H(1 − e−2τ). We observe that the actual total
angular momentum is larger than expected from the contribution of the Ekman
layers, for all the tested values of Fr, at least for τ 6 0.3; the excess is about 40%
at τ = 0.1. Since the only additional source of angular momentum is the sidewall
friction, we attribute to this source this excess of angular momentum.

Some further insight into the contribution of the sidewall friction to the growth of
Γ can be obtained for the homogeneous-fluid case. The Ekman-layer dominance of
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Figure 12. Numerical and approximate results for the angular velocity ω(r, z) at successive t:
(a) 2 rev, (b) 8 rev; ε = 2.04 × 10−2, Fr2 = 2, E = 5 × 10−5, H = 1, h0 = 0.2. The dashed and
dot-dashed lines are predictions of the model for the lower and upper layers, respectively. Note that
the numerical profiles mostly collapse onto a single line for each layer.

the spin-up process is an asymptotical E → 0 result, and the leading term of ω(r, τ)
is given in table 1 in Appendix A. Let us use this ω to estimate the torque of the
sidewall (per radian)

Msw = HE

(
r
∂ω

∂r

)
r=1

= 2HE
e−2τ

1− e−2τ
, (4.9)

while the Ekman layer torque is M = 0.25E1/2e−2τ, see (A 3). (Theses estimates must
assume τ > E1/2/H , the formation time of the Ekman layers, of course.) The ratio
between the Ekman-layer and the sidewall torques is 2HE1/2/(1− e−2τ) and indicates
that for small values of τ a significant contribution from the outer-wall torque is
received. For the values of E and H in our case, and τ = 0.1, the torque ratio is
0.32. We therefore expect that the value of Γ at τ = 0.1 is at least 32% larger than
evaluated by only the Ekman-layer friction result (A 3). This estimate is consistent
with the numerical results of figure 15(b). Another test which we performed was the
comparison of the numerically calculated torque of the bottom boundary with the
Wedemeyer prediction (A 3); we found good agreement (the latter is actually slightly
larger than the former).

5. Concluding remarks
The time-dependent flow field during the spin-up from rest about the vertical

axis of a container with two fluids of different densities was analysed. Attention was
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Figure 14. Numerical predictions (solid line) and predictions of the one-layer analytical model
(dashed lines) at z = 0.1 for ωl at successive t: ε = 2.04 × 10−2, Fr2 = 2, E = 5 × 10−5, H = 1,
h0 = 0.2.

focused on a configuration where the layer of lower fluid is thin, and the thicker upper
layer has a free upper surface. Thus, the upper fluid is, for a part or all the spin-up
time interval, not directly affected by the bottom Ekman layer friction and therefore
the spin-up of this two-fluid system takes typically longer than in the homogeneous
counterpart.

The numerical results presented, supported by asymptotical (E → 0) approximate
considerations, enhance our knowledge of the spin-up from rest process in this
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0.25H; (b) Γ scaled with the Wedemeyer-approximation-based value 0.25H(1− e−2τ).

more complex configuration, affected by a combination of centrifugal/Coriolis and
(reduced) gravity accelerations. As in the homogeneous fluid case, the spin-up is driven
mainly by the Ekman layer on the horizontal bottom boundary. The upper and lower
fluids retain distinctive cores, with different z-independent angular velocities. The
coupling between the cores is provided by an Ekman-like shear layer which develops
on the deforming interface to smooth out the difference of ω. This shear layer drives
the spin-up of the upper fluid layer and hinders the spin-up of the dense fluid in
the lower layer. Typically, the dense fluid is spun up first, and subsequently acts as a
partly spun-up buffer between the bottom and the thick upper layer.

The Ekman-layer dominance, z-independent radial and angular velocities in the
cores and the fact that the pressure satisfies a hydrostatic–cyclostrophic balance
motivated the formulation of a simple approximate model which facilitated the
interpretation of the complex flow field under investigation.

When Fr2(1 + ε)/(9h0) < 1 and the lower core is much thinner than the upper core,
the deformation of the interface is relatively small, and the fluid in the lower core is
spun-up to about 2/3 of the final value during a time 2h0/(E

1/2Ω∗) while the upper
fluid remains essentially at rest. Next, the spin-up of the upper layer is driven by the
weak Ekman layer on the interface. Since the friction at the bottom is reduced to
1/3 of the initial value, the subsequent spin-up time interval for the upper fluid is
expected to be prolonged by a factor 3 compared with a homogeneous fluid of the
same thickness in direct contact with the boundary, see (2.2).

When Fr2(1+ε)/(9h0) is large the interface is strongly deformed during the spin-up
process and a bare spot appears near the centre. At this spot the upper fluid makes
contact with the bottom and this supplements the weak friction at the interface. The
spin-up is more effective when a bare spot is present. However, what is important to
the supply of angular momentum to the system is the size (radius) of this spot, not
merely its presence, because the torque of a von Kármán layer over a disk of radius
r is ∝ r4, see (2.2).

The previous considerations indicate that in a two-layer system the Ekman-layer
spin-up interval is expected to be bounded by the relationship

1 < τ∗su two-layer/τ
∗
su homogeneous < 3− 2h0/H, (5.1)

which reflects the transition from very large to very small values of Fr2, i.e. from very
weak to very strong stratification.
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The density difference parameter, ε, assumed small, plays a passive role in the
spin-up process. However, the maximal transient displacement of the interface during
the spin-up may be O(ε−1) larger than at the end of the process.

The spin-up of a homogeneous fluid can be conceptually recovered as the limiting
case of the two-fluid configuration in the asymptotic limit of Fr → ∞ (ε → 0). As
the density difference between the fluids is reduced – with angular velocity, geometry
and viscosity of the systems fixed – the interface during spin-up becomes steeper and
steeper until it coincides with the spin-up front in the aforementioned asymptotic
limit.

The assumption of equal viscosities in both fluids can be easily relaxed. The expected
qualitative consequences are an increased viscosity of the lower fluid enhancing the
deformation of the interface and the appearance of the bare spot, and vice versa.

The ability of the relatively simple, fixed-grid numerical code, to reproduce the
complicated flow field with a moving interface (which is both a kinematic shock and
a detached shear layer) is remarkable, and gives credence to the use of this solver in
other complex circumstances. An obvious extension is the investigation of the spin-up
from rest of a three-layer fluid, which is underway and will be reported elsewhere.
However, this numerical approach smears the kinematic shock (discontinuity of φ)
over several grid intervals and consequently the value of ρ in this region may have
errors of relative magnitude ε, see (3.1). This, in turn, may affect the local accuracy of
the Ekman layer thickness, shear and transport results. To avoid this loss of accuracy
the computations with this scheme must be restricted to small values of ε or to very
fine grids. Solutions of this problem by different numerical schemes which provide
high resolution of interfaces (e.g. volume of fluid) are worthy of consideration.

The main limitations of the present theoretical tools are (a) various numerical
difficulties of stability and resolution which were encountered for large time intervals,
and (b) the assumed axial symmetry. These deficiencies are plausibly connected
with physical effects. Indeed, there are indications (Linden & van Heijst 1984) that
baroclinic instabilities develop at the edge of the bare spot, and the numerical results
indicate mixing in the interface domain after the spin-up of the lower fluid. These
effects are inherently non-axisymmetric and cannot be reproduced by the present
analysis. A combined experimental–theoretical approach is necessary to obtain more
details of the flow field at more advanced times than considered here.

The present two-layer flow-field investigation provides useful insights into the
continuously stratified fluid case, but the results cannot be carried over directly. The
main differences between the two configurations are: (a) there is no clear-cut interface
in a stratified fluid; (b) a strong z-dependence of u and ω is expected in the Ekman-
layer-affected core of a stratified fluid. This problem needs a special analysis which is
attempted in a separate study, see Flor, Ungarish & Bush (2002).

The authors would like to thank the Program of Scientific–Technological Cooper-
ation Austria–Israel, the Christian Doppler Laboratory for Continuous Solidification
Processes, and the Fund for the Promotion of Research at the Technion University,
Israel, for their financial support of this project.

Appendix A. Homogeneous fluid approximation
Wedemeyer (1964) suggested the use of a momentum-integral correlation between

the angular velocity jump and the volume transport in the Ekman-type layer. Simi-



140 M. Ungarish and J. Mang

0 6 r2 6 e−2τ e−2τ 6 r2 6 1

2HE−1/2u −r e−2τ(r − 1/r)/(1− e−2τ)
ω + 1 0 (1− e−2τ/r2)/(1− e−2τ)
wE−1/2 z/H − 1 −e−2τ(z/H − 1)/(1− e−2τ)

Table 1. Velocity field for spin-up from rest of a homogeneous fluid with open boundary at z = H
and solid bottom at z = 0 (see figure 2) according to Wedemeyer (1964). Here τ = t∗/τ∗su and

τ∗su = 2H/(E1/2Ω∗).

larity with the linear (small differential rotation) case gives the simple form

Q = −0.5E1/2r[ω(z = 0+)− ωbottom], (A 1)

where Q is the radial volume flux (per radian) carried by the shear layer and 0+

denotes the core of fluid. In the spin-up from rest problem ωbottom = 0. The velocity
field in the inviscid interior is expanded in a power series of E1/2, and the leading
terms, subject to the governing equations and volume transport matching with (A 1),
yield the results given in table 1.

The total angular momentum is

Γ (t) =

∫ H

0

∫ 1

0

[ω(r, z, t) + 1]r3 dr dz = 0.25H(1− e−2τ), (A 2)

and the torque imposed by the Ekman layer on the fluid in these circumstances (per
radian) is

M = 0.25E1/2e−2τ. (A 3)

We note in passing that various attempts have been made to modify and improve
this model, but the simple results used here capture well the qualitative and quan-
titative behaviour of the problem under investigation, see Weidman (1976a, b) and
Duck & Foster (2001), where other pertinent references are also given. (The simplest
correction is a quantitative one, suggested by the solution of von Kármán’s rotating
disk problem: to introduce a multiplication factor 0.89 in the right-hand side of (A 1),
which also means that E1/2 should be multiplied by this factor in the subsequent
results. But in practical cases this correction is of the order of magnitude of the
neglected terms in the approximation, and hence not really important.)

Appendix B. The finite-difference code
B.1. Time discretization

Consider the time advance of a flow field variable denoted by f at time t to the new
value denoted by f+ at time t + δt. A forward-in-time finite-difference technique is
used. One time step for the momentum equation (3.5) with the Coriolis and pressure
terms treated implicitly and other terms treated explicitly yields

v+ + 2δtẑ × v+ = − δt

1 + εφ
∇p+ + δtX + v ≡ B, (B 1)

where

X = −v · ∇v +
1

1 + εφ
[ fφ+ E∇2v]. (B 2)
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By means of simple vector algebra manipulations (as discussed in detail by Ungarish
1993, p. 303) an explicit expression for v+ is obtained from (B 1):

v+ =
1

1 + 4δt2
[B + 4δt2(ẑ · B)ẑ − 2δtẑ × B]. (B 3)

Next the divergence operator is applied to both sides of this expression and the
continuity equation (3.4) is imposed on v+. The result is an elliptic equation for the
pressure p+ at t+ δt,

∇ · 1

1 + εφ
∇p+ + 4δt2

∂

∂z

1

1 + εφ

∂p+

∂z
− ∇ · X − 4δt2

∂

∂z
ẑ · X

−2δtẑ · ∇× X − 4δt
∂w

∂z
− 2ẑ · ∇× v − ∇ · v

δt
= 0. (B 4)

Theoretically, the last term is zero, but for preventing an accumulation of numerical
errors it is sometimes useful to keep it in the calculations. Substitution of the
boundary conditions (3.13)–(3.15) for v into the appropriate components of (B 1)
yields Neumann-type boundary conditions ∂p+/∂r and ∂p+/∂z for (B 4). They define
p+ up to an arbitrary constant. The pressure pil,1 is set to 0 for definiteness. Using the
solution for p+, the velocity field v+ is straightforwardly obtained from (B 3).

The φ+ field is calculated next using the scalar equation (3.8). In principle, this
completes the time step advance, and a new cycle can be attempted.

B.2. Spatial discretization

The numerical, staggered grid is sketched in figure 3. The method of central differ-
ences was employed for all terms except for the advection terms in the φ transport
equation (3.8). The discontinuity of φ may introduce spurious numerical oscillations
in the solution of (3.8). To reduce this effect, for this equation, according to MacCor-
mack’s explicit method, the following predictor–corrector stages were used for each
time step:

φ
p
i,j = φij − δt(Advfφ)i,j + δt(Difφ)ij ,

φci,j = φ
p
ij − δt(Advbφp)ij + δt(Difφp)i,j ,

φ+ = 0.5(φij + φcij),

 (B 5)

where Advf and Advb denote the advection terms as approximated by forward and
backward differencing. Dif denotes the diffusion terms approximated by central
differences, as illustrated by (3.21).

The axial stretching function used is

z = H(aZ − 1)/(aH − 1), (B 6)

where the constant a > 1 is prescribed. Both the physical grid z and the uniform
grid Z are in the range [0, H], Zj = (j − 0.5)δZ and δZ = H/jl for j = 1(1)jl. For
example, for H = 1 and jl = 200 we used a = 2.5 to obtain the first interval, at the
bottom, as z3/2 = 3.0613× 10−3, while the Ekman layer thickness 3E1/2 = 21.2× 10−3.
Stretching for the detached Ekman layer was not attempted, because it would require
a dynamic-adjustable grid. Moreover, the thickness of the detached layer is larger by
a factor of at least 2 than that at the bottom, and hence our grids provided good
resolution of this layer without special stretching.
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Appendix C. Mathematical formulation of the approximate model

It is assumed that
√
E � 1 and that the flow during the period of time considered

here is governed by the secondary circulation of the thin quasi-steady Ekman-type
layers at the bottom plate and the interface Σ. The arguments of Wedemeyer’s (1964)
homogeneous-fluid spin-up theory (see also Greenspan 1968 and Ungarish 1993)
indicate the following orders of magnitude for the flow variables in the inviscid core:
ω = v/r ∼ 1; u, w ∼ E1/2. In the present case we distinguish between the variables in
the upper and lower cores using the subscripts u and l. In each core the radial and
angular velocities, u and ω, are expected to be z-independent and the axial velocity
w to vary linearly with z. The cores are separated by the interface z = h(r, t). Let us
introduce the absolute angular velocities in the cores

Ωu,l(r, t) = vu,l(r, t)/r + 1. (C 1)

The pressure field in each core satisfies the hydrostatic–cyclostrophic balance taking
account of the appropriate density, and the pressure is continuous on the interface.
These considerations yield, after some algebra, a connection between the position of
the interface and the angular velocities

h(r, t) = hW (t)− Fr2

[∫ 1

r

(Ω2
l − Ω2

u)r̄ dr̄ + ε

∫ 1

r

Ω2
l r̄ dr̄

]
, (C 2)

where hW (t) denotes the value at the sidewall r = 1. This is readily obtained from the
volume conservation requirement of the lower-layer fluid (assumed to start at r = 0),

hW (t) = h0 + Fr2

[∫ 1

0

(Ω2
l − Ω2

u)r
3 dr + ε

∫ 1

0

Ω2
l r

3 dr

]
. (C 3)

We note that the largest displacements of the interface are contributed by the first
integral in the last two equations, because the second integral is multiplied by the
small ε. However, this contribution can be significant only during the early stages of
spin-up, when the angular velocity difference between the upper and lower cores is of
order unity.

The azimuthal momentum equation can be written to leading order as

∂vu,l

∂t
+ uu,l

(
1

r

∂

∂r
(rvu,l) + 2

)
= E

[
∂2vu,l

∂r2
+
∂

∂r

(vu,l
r

)]
. (C 4)

The initial and boundary conditions are

v = −r (t = 0 : 0 6 r 6 1) and v = 0 (t > 0+ : r = 0, 1). (C 5)

In order to solve (C 4) directly, a simple expression for the radial velocities uu,l in
terms of the azimuthal velocities vu,l is needed. At the bottom of the container, a thin
Ekman layer develops in about one third of a revolution. Because the adjustment
time of the Ekman layer is much shorter than the spin-up timescale, the Ekman layer
can be considered quasi-steady. During spin-up, the flow inside the asymptotically
thin Ekman layer (thickness O(E1/2)) is from the centre to the periphery. Following
Wedemeyer (1964), integral volume conservation yields

uEl =
E1/2

2

1

h
vl < 0 (C 6)

for the contribution of the Ekman-layer volume transport to the radial lower-layer
core flow. The difference in angular velocities between the partly spun-up region in
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the lower layer and the upper layer causes the formation of a Ekman-type shear layer
at the interface. This inclined shear layer supports the spin-up of the upper layer
and hinders the spin-up of the lower layer. Its contributions to the core flows in the
respective layers are incorporated as

uΣl =
β

1 + β

1

2

(
E

cos α

)1/2
1

h
(vl − vu) > 0, (C 7)

uΣu =
1

1 + β

1

2

(
E

cos α

)1/2
1

H − h (vu − vl) < 0, (C 8)

where α denotes the local angle of inclination of the interface and β = (ρ∗u/ρ∗l )
√
ν∗u/ν∗l .

We note that the foregoing Ekman-layer contributions are based on a linear analysis
(i.e. small perturbations around solid-body rotation), but in the present problem the
nonlinear effects are not small. This places an inherent limitation on the accuracy of
the model.

In addition to the contributions of the shear layers, the radial flows uDu,l induced
by the axial deformation of the interface must also be considered. Conservation of
volume yields

uDl = − 1

rh

∫ r

0

∂h

∂t
r̄ dr̄, (C 9)

uDu =
1

r(H − h)
∫ r

0

∂h

∂t
r̄ dr̄. (C 10)

The derivative ∂h/∂t can be obtained either directly by a backward-difference ap-
proximation or iteratively. The values of ul and uu are the sums of the contribu-
tions (C6)–(C10), which closes (C4). Equation (C 4) was solved by an explicit FTCS
finite-difference discretization subject to a CFL condition. A MacCormack and a
Crank–Nicholson discretization were also tested and led to similar results. In test
runs the code successfully reproduced the parabolic shape of the free surface of a
single fluid in solid-body rotation and the analytical result for the spin-up from rest
of a pure fluid as given in table 1.

C.1. Small-Fr2 case

Assume that the stratification is strong and the upper layer much thicker than the
lower layer of fluid. In this case the additional approximation h = h0 and vu = −r
can be made in the previous equations, and the solution of (C 4)–(C 7) is of interest
only in the lower layer. For α = 0 (horizontal interface) and β = 1 (fluids of similar
viscosities and densities) we obtain

ul =
1

4
E1/2 1

h0

(3vl + r). (C 11)

We substitute this result into (C 4). The inviscid (E = 0) form of this equation
yields (4.3), and therefore the solution in the interior of the lower region is

ωl =
2

3

1− e−2T/r2

1− e−2T − 1 (e−T 6 r < 1) (C 12)

and ωl = −1 for r < e−T, where T is the time scaled with τ∗su−l = 2h0/(E
1/2Ω∗).

However, we observe that ωl(r = 1) = −1/3 and hence a shear layer is needed to
satisfy the boundary condition ωl(r = 1) = 0. We denote by ω̃ the angular velocity
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in this region. The balance in this layer is provided by the steady-state viscous form
of (C 4). In linearized simplified form, this is a classical Coriolis–shear balance of
Stewartson-layer type which reads

2ul = E
d2ω̃

dx2
, (C 13)

where x = 1 − r, and ul is given above (but simplified by the fact that now r ≈ 1).
The result, subject to the boundary conditions, is

ω̃ = −1

3

(
1− exp

[
−
√

3

2h0

E−1/4x

])
. (C 14)

C.2. Constant Ωu and Ωl approximation

When both Ωu and Ωl are constants (or functions of t only) equations (C 2)–(C 3) can
be combined and easily integrated to yield the explicit result

h(r, t) = h0 − 1
4
Fr2Ω2

l

[
1−

(
Ωu

Ωl

)2

+ ε

]
(1− 2r2). (C 15)

Linden & van Heijst (1984) developed a similar result for differential spin-up from
angular velocity 1 − ∆ to 1 (in our notation), where 0 < ∆ < 1. They used the
assumption that the lower layer is fully spun up (Ωl = 1 in our notation) and the
upper layer rotates with the initial angular velocity, 1 − ∆; moreover, they neglected
the typically very small ε in (C 15). In this case,

h(r, t) = h0 − 1
4
Fr2[1− (1− ∆)2](1− 2r2). (C 16)

According to this estimate, a bare spot (i.e. h 6 0) is expected when (a) Fr2/(4h0) > 1
and (b)

∆ > 1−
(

1− 4h0

Fr2

)1/2

, (C 17)

which is, upon proper re-scaling, similar to (4.5) in that paper.
However, the present analysis indicated that the Ekman layer on the interface

between the upper and lower cores prevents full spin-up of the lower region unless a
similar state is attained in the upper region. A more realistic estimate is that, while
Ωu = 1 − ∆, the lower core can attain only Ωl = 1 − ∆/3. If these values are used
in (C 15), slightly different, and perhaps more accurate, forms of (C 16) and (C 17)
are obtained. In general, larger threshold values of Fr and ∆ than those predicted by
(C 16) and (C 17) are obtained.
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